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Abstract

A method is investigated to reduce the number of numerical parameters in a mate-
rial model for a solid. The basis of the method is to detect interdependencies between
parameters within a class of materials of interest. The method is demonstrated for
a set of material property data for iron and steel using the Johnson-Cook plasticity
model.
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1 Introduction

Many material models for use in modern simulation software have a large number of material
dependent parameters. A large number of parameters causes difficulty for at least four
reasons:

• It can be time consuming and expensive to design and conduct experiments to explicitly
determine all the necessary parameters for a given material.

• To investigate changes to a measurable material property such as yield stress might re-
quire changes to multiple parameters in the model, because of possible interdependence
between them.

• When undertaking a material optimization or sensitivity study, it becomes time con-
suming to apply the necessary statistical variations to a large number of input param-
eters.

• Such an optimization study might give misleading results if material parameters are
falsely assumed to be independent of each other, leading to an optimized material that
cannot be obtained in real life.

It is therefore desirable to investigate ways of reducing the number of material parameters.
In general, it is not satisfactory to simply assume that one or more parameters is constant,
because in reality, it may not be possible to fabricate real materials with arbitrarily chosen
parameters. For example, suppose an aerospace company wishes to explore the effect of
using alternative types of composite materials for an aircraft design. The available material
model predicts the stress tensor σ as a function of the strain tensor ε. The model has two
material parameters: elastic modulus E and mass density ρ. Thus, the model has the form

σ(ε;E, ρ).

Suppose the material parameters are known to fall within the following limits for all real
materials:

100GPa ≤ E ≤ 200GPa, 1500kg/m3 ≤ ρ ≤ 2500kg/m3,

providing a constraint on the parameters. But these limits do not provide enough constraint
on the material parameters, because in real life (we suppose for purposes of explanation)
stiffer composites always have higher density. Then there must exist some relation E(ρ) that
expresses this interdependence. Once this interdependence is known, we can write

σ(ε; ρ) = σ(ε;E(ρ), ρ).

Thus, the original two-parameter model has become a one-parameter model. The present
study proposes a statistical approach to detecting the interdependence between material
parameters for a set of materials, such as the function E(ρ).
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2 Multiple linear regression

In this section we summarize the technique of multiple linear regression, a standard statistical
technique for determining the interdependence between variables. Suppose there is a given
sample of N numbers yj, j = 1, 2, . . . , N . Associated with each yj is a set of M numbers
xij, i = 1, 2, . . . ,M . Regression attempts to find M regression coefficients b1, b2, . . . , bM such
that the function defined by

ŷ(x1, x2, . . . , xM) = b1x1 + b2x2 + · · ·+ bMxM

minimizes the error defined by

ε =
N∑
j=1

(
ŷ(x1j, x2j, . . . , xMj)− yj

)2
.

After minimizing the error with respect to each bi according to a standard method [1], the
regression coefficients are found to be

B = (XTX)−1XTY,

where

B =


b1
b2
...
bM

 , Y =


y1

y2
...
yN

 , X =


x11 x21 . . . xM1

x12 x22 . . . xM2
...

...
...

x1N x2N . . . xMN

 .
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3 Interdependence between groups of parameters

Suppose a given material model has P parameters:

p1, p2, . . . , pP .

We attempt to find a mathematical relation between these parameters based on experimental
data on some class of real materials. Assume that all P parameters are known for a set of
N materials, whether from published test data or new tests. This set of materials and their
parameters will be called the sample. The particular values of the parameters in the sample
for material j are denoted by

p1j, p2j, . . . , pPj.

To apply regression, the parameters are assembled into groups G1, G2, . . . , GM+1, where
M ≥ 1. Each group is a function of the P parameters:

G1 = Ĝ1(p1, p2, . . . , pP ),

G2 = Ĝ2(p1, p2, . . . , pP ),
...

GM+1 = ĜM+1(p1, p2, . . . , pP ).

It is not necessary for the groups to be nondimensional. The Ĝ’s can be nonlinear functions.
For material j in the sample, the values of the groups are denoted

G1j, G2j, . . . , G(M+1)j.

Thus, for any j, 1 ≤ j ≤ N ,

Gij = Ĝi(p1j, p2j, . . . , p3j).

Now approximate a particular group, say GM+1, in terms of the other groups. This is
accomplished by using multiple linear regression to find a set of coefficients b1, b2, . . . , bM
such that

GM+1 = b1G1 + b2G2 + · · ·+ bMGM . (1)

According to the method discussed in Section 2, the regression coefficients are found from

B = (XTX)−1XTY, (2)

where

B =


b1
b2
...
bM

 , Y =


G(M+1)1

G(M+1)2
...
G(M+1)N

 , X =


G11 G21 . . . GM1

G12 G22 . . . GM2
...

...
...

G1N G2N . . . GMN

 .
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It is assumed that a solution B to (2) can be found, that is, XTX is nonsingular. Using the
resulting bi values, (1) provides a relation between the material groups.

This procedure started with a model that has P parameters, all of which were apparently
unrelated and capable of being varied independently. Based on the sample of experimental
data for some class of real materials, the procedure arrived at a mathematical relation (1)
between the parameters. This, in principle, amounts to eliminating one of the parameters,
say pe, 1 ≤ e ≤ P , from the material model.

In general, the dependence between pe and the remaining P − 1 parameters is implicit,
because the G’s in (1) could be nonlinear functions of the material parameters. However,
a major simplification results if this parameter pe appears in only one group. By suitable
numbering of the groups, we can label group M + 1. In this case, pe appears only in the
left-hand side of (1), so, unless the form of GM+1 is complicated, pe can be explicitly solved
for in terms of the other parameters.
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4 Example: Johnson-Cook steel parameters

The Johnson-Cook plasticity model [2] is a widely used model for the flow stress σ of a
material in terms of the equivalent plastic strain ε, its time derivative ε̇, and the temperature
T . The form of the model is

σ = (A+Bεn)(1 + C log ε̇)(1− Tmh )

where A, B, C, m, and n are material parameters. Th is the homologous temperature,
defined by

Th =
T − Troom

Tmelt − Troom
where Troom and Tmelt are the room temperature and the melt temperature, respectively.
Thus, the Johnson-Cook plasticity model has six material parameters: A, B, C, m, n, and
Tmelt.

The Johnson-Cook fracture model [3] provides a similarly structured model for failure
strain εf . This is implemented in a simulation code through the failure criterion∫ t

0

ε̇

εf
dt ≥ 1.

When the plastic strain at a point in the body accumulates to the extent that this inequality
holds, fracture occurs. The expression for εf is

εf =
(
D1 +D2e

D3σ∗
)(

1 +D4 log ε̇
)(

1 +D5Th
)

where D1, D2, D3, D4, and D5 are material parameters. σ∗ is a measure of the hydrostatic
stress relative to the deviatoric stress, defined by

σ∗ =
σ11 + σ22 + σ33

3Y

where Y is the von Mises equivalent stress. In both the Johnson-Cook plasticity and fracture
models, treatment of terms involving log ε̇ for small values of ε̇ is left to the discretion of
those who implement the models in simulation codes.

In the present study, we do not consider all the D’s in the fracture model explicitly as
material parameters. Instead, for purposes of illustration, only the uniaxial tensile strain
at failure ef is considered, neglecting the strain rate term and the temperature term in the
fracture model. This is defined by

ef = D1 +D2e
D3/3.

As an example of the technique described in the previous sections, we investigate interde-
pendence between the following parameters: A, B, C, n, and ef .

The study is restricted to iron and steel. A literature search turned up 29 sets of Johnson-
Cook plasticity parameters for this class of materials. Of these, 17 additionally reported the
Johnson-Cook fracture parameters. The materials are as follows:
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• Armco electrical iron [2]

• Carpenter electrical iron [2]

• 1006 steel [2]

• 4340 steel [2]

• S7 tool steel [2]

• Steel A [4]

• Steel B [4]

• Steel C [4]

• Steel D [4]

• 4340 tempered martensite [4]

• RHA [4]

• 2in RHA [4]

• Weldox 460E (set 1) [5]

• 4142 steel [6]

• 1045 steel [7]

• DP600 dual phase steel (sheet) [8]

• DP600 dual phase steel (tube) [8]

• XC48 steel (AISI1048) [9]

• 1080 steel [10]

• VascoMax steel [10]

• 35NCD16 steel [11]

• 316L stainless steel [11]

• 42CD4U steel [11]

• S300 steel [11]

• Mild steel [12]

• DP590 steel [12]

• Weldox 460E steel (set 2) [13]
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• Weldox 700E steel [13]

• Weldox 900E steel [13]

The materials listed as “Steel A,” etc., have parameters that are export controlled and so
are not identified in this document.

4.1 Case 1: relate B to A and n

This case attempts to determine a dependence of B on combinations of A and n within the
sample of iron and steel alloys. The groups, which were arrived at through trial and error,
are as follows:

G1 = 1

G2 = A

G3 = A4

G4 = n2

G5 = n2/A

G6 = A/B

Note that G6 is the only group that involves B, so we approximate this group by a linear
combination of the other groups. Using the method described in the previous section, re-
gression analysis was carried out to determine the coefficients b

(1)
1 , b

(1)
2 , b

(1)
3 , b

(1)
4 , and b

(1)
5 in

the relation

G6 = b
(1)
1 G1 + b

(1)
2 G2 + b

(1)
3 G3 + b

(1)
4 G4 + b

(1)
5 G5.

The results of fitting the coefficients to the material data with N = 29 and M = 6, using SI
units, resulted in the following values:

b
(1)
1 = −3.9309× 10−01

b
(1)
2 = 2.8495× 10−09

b
(1)
3 = −2.0452× 10−37

b
(1)
4 = −1.2104× 10+00

b
(1)
5 = 4.9056× 10+08

The regression fit is shown in Figure 1. In this plot, the horizontal coordinate represents
sample data for G6. That is, for the dot in the figure representing material j in the sample,
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the horizontal coordinate is G6j, as determined from the sample data. The vertical axis
represents values determined by the regression fit. For material j, the vertical coordinate is

b
(1)
1 G1j + b

(1)
2 G2j + b

(1)
3 G3j + b

(1)
4 G4j + b

(1)
5 G5j

where the values for {G1j, G2j, G3j, G3j, G4j} (but not G6j) are taken from the sample data.
The dashed line with slope 1 is shown for reference. If the regression fit were perfect, all the
dots would fall on this line.

Figure 1. Regression fit for G6 as a function of sample data
in Case 1.
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4.2 Case 2: relate C to A and B

This case attempts to determine a dependence of C on combinations of A and B. The
groups, which were arrived at through trial and error, are as follows:

G1 = 1

G2 = 1/
√
A

G3 = A/B

G4 = 1/A2

G5 =
√
C

The coefficients in the regression fit for

G5 = b
(2)
1 G1 + b

(2)
2 G2 + b

(2)
3 G3 + b

(2)
4 G4

ae found to be

b
(2)
1 = 2.5406× 10−01

b
(2)
2 = −4.1232× 10−06

b
(2)
3 = −9.8688× 10−03

b
(2)
4 = 2.2887× 10+15.

The regression fit is shown in Figure 2.

4.3 Case 3: relate ef to A, B, and n

This case attempts to determine a dependence of ef on combinations of A, B, and n. The
groups, which were arrived at through trial and error, are as follows:

G1 = 1

G2 = ne−n

G3 = 1/n2A

G4 = 1/(A+ nB)

G5 = ef .

15



Because tabulated Johnson-Cook failure parameters are available for only 17 materials in
the sample of 29, in this case N = 17. The coefficients in the regression fit for

G5 = b
(3)
1 G1 + b

(3)
2 G2 + b

(3)
3 G3 + b

(3)
4 G4

ae found to be

b
(3)
1 = −8.2062× 10−01

b
(3)
2 = 5.4919× 10+00

b
(3)
3 = 1.1278× 10+07

b
(3)
4 = 4.2377× 10+08.

The regression fit is shown in Figure 3.
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Figure 2. Regression fit for G5 as a function of sample data
in Case 2.
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Figure 3. Regression fit for G5 as a function of sample data
in Case 3.
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5 Discussion

The examples illustrate how the interdependencies between parameters within a class of
materials (iron and steel) can be exploited to express one or more parameters in terms of
the others, thus reducing the number of parameters in the model. In Case 1, the following
relation was found:

A

B
= b

(1)
1 + b

(1)
2 A+ b

(1)
3 A4 + b

(1)
4 n2 + b

(1)
5

n2

A
,

which in effect eliminates B as an independent model parameter. From Case 2,

√
C = b

(2)
1 + b

(2)
2

1√
A

+ b
(2)
3

A

B
+ b

(2)
4

1

A2
,

which in effect eliminates C as an independent model parameter. From Case 3,

ef = b
(3)
1 + b

(3)
2 ne−n + b

(3)
3

1

n2A
+ b

(3)
4

1

A+ nB
,

which predicts the failure strain in uniaxial tension.

The examples analyzing the Johnson-Cook parameters for iron and steel illustrate some
results that are perhaps unexpected:

• Case 1 shows that B is correlated with A and n, a result that would probably not
suggest itself from casual examination of the raw material test data.

• Case 2 shows that the constant in the rate-dependent term, C is related to the static
parameters A and B.

• Case 3 shows that the failure strain in uniaxial tension, ef , is related to the plasticity
parameters A, B, and n. This result is not very surprising, because in real materials
there is a well-known trade-off between flow stress and ductility.

Of course, the acceptability in applications of treating B, C, and ef as dependent parameters
is conditional on the acceptability of the regression fits, as illustrated in the figures. The
material parameters in the iron and steel sample are derived from a number of different
material testing techniques, and it is possible that if all the materials used exactly the same
techniques, the regression fit might be tighter. No effort was made in this study to exclude
any sets of parameters on the basis of quality of the data or testing methods. Also, the sample
of 29 sets of material parameters included a spectrum of alloys with different compositions
and processing techniques. In view of this, it is perhaps surprising that the trends shown in
the examples are as strong as they are.

The groups G1, . . . in most cases have no physical significance; they are merely combina-
tions of parameters that result in a good fit when related to each other by linear regression.
It should also be noted that dimensions and units have no importance in this analysis, as
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long as a consistent set of units is used throughout. The regression coefficients bi can have
different dimensions from each other.

The primary disadvantage of the approach presented in this paper is that there is no
automated way of defining the groups. At present, this can only be accomplished by trial
and error, although this process can be informed by expected interdependencies based on
physical insight. However, it seems possible that in the future, some method could be
developed for identifying the groups that result in the best regression fit.
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